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ABSTRACT 
 

Chronic neuroinflammation is thought to potentiate medial temporal lobe (MTL) atrophy 

and memory decline in Alzheimer’s disease (AD). It has become increasingly important 

to find novel immunological biomarkers of neuroinflammation or other processes that 

can track AD development and progression. Our study explored which pro- or anti-

inflammatory cerebrospinal fluid (CSF) biomarkers best predicted AD neuropathology 

over 24 months. Using Alzheimer’s Disease Neuroimaging Initiative data (N=285), CSF 

inflammatory biomarkers from mass spectrometry and multiplex panels were screened 

using stepwise regression, followed up with 50%/50% model retests for validation. 

Neuronal Pentraxin 2 (NPTX2) and Chitinase-3-like-protein-1 (C3LP1), biomarkers of 

glutamatergic synaptic plasticity and microglial activation respectively, were the only 

consistently significant biomarkers selected. Once these biomarkers were selected, linear 

mixed models were used to analyze their baseline and longitudinal associations with 

bilateral MTL volume, memory decline, global cognition, and established AD biomarkers 

including CSF amyloid and tau. Higher baseline NPTX2 levels corresponded to less 

MTL atrophy [R2= .287, p<.001] and substantially less memory decline [R2=.560, 

p<.001] by month 24. Conversely, higher C3LP1 modestly predicted more MTL atrophy 

[R2=.083, p<.001], yet did not significantly track memory decline over time. In 

conclusion, NPTX2 is a novel pro-inflammatory cytokine that predicts AD-related 

outcomes better than any immunological biomarker to date, substantially accounting for 

brain atrophy and especially memory decline. C3LP1 as the microglial biomarker, by 

contrast, performed modestly and did not predict longitudinal memory decline. This 

research may advance the current understanding of AD etiopathogenesis, while 
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expanding early diagnostic techniques through the use of novel pro-inflammatory 

biomarkers, such as NPTX2. Future studies should also see if NPTX2 causally affects 

MTL morphometry and memory performance.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Alzheimer’s disease; medial temporal lobe; inflammation; immunology; 
amyloid; tau; memory; biomarkers; NPTX2; C3LP1 
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CHAPTER 1: INTRODUCTION 

Thesis Organization 

My thesis begins with a review of the literature on Alzheimer’s disease, 

neuroinflammation, synaptic plasticity, as well as pro-inflammatory cytokines and 

pentraxins, with their speculated and probable immunological role in the etiopathogenesis 

of Alzheimer’s disease being included.  

The next section of my thesis consists of the methods conducted during my study, 

followed by the results obtained and a discussion of the meaning of these results.  Lastly, 

I’ve included a conclusion of the study to summarize the implications for this novel study 

for the future of the field of AD biomarker and proteomics research. 

 

Purpose of Study 

The vast majority of research to date has been on studying the upregulation of 

pro-inflammatory cytokines and their specific role in the chronic neuroinflammatory 

mechanisms that underlie AD pathogenesis. My study proposes to highlight the need for 

understanding that these cytokines are functionally pleiotropic in their regulation of 

neuroinflammation and cannot simply be thought of as “good” or “bad” protein 

phenotypes. 

Therefore, it is worthwhile to explore established and novel CSF pro- or anti-

inflammatory biomarkers that are associated with baseline and longitudinal AD 

neuropathology and memory performance in aged participants across the AD spectrum. 

In this study, we used data from a database called Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) to analyze 285 aged adult subjects at baseline and through months 6, 
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12, and 24. CSF peptide biomarkers of neuroinflammation were isolated from baseline 

liquid chromatography/multiple reaction monitoring mass spectrometry (LC/MRM-MS) 

(http://adni.loni.usc.edu/about/centers-cores/biomarker/), as well as a CSF multiplex 

protein array.  

Based on the initial stepwise regression analyses conducted (see Section 2.8 in 

Methods and 3.2 in Results), NPTX2 and C3LP1 were selected for significance and 

further examined. The selected biomarkers were analyzed to explore their baseline and 

longitudinal associations with gray matter (GM) volume in bilateral MTL and a memory 

factor, as well as global cognition and established AD biomarkers such as CSF Aβ1-42 

and tau, and phosphorylated tau (ptau). 
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CHAPTER 2: LITERATURE REVIEW 

Alzheimer’s disease 

Alzheimer’s disease (AD) is clinically characterized by a number of components 

including global cognitive impairment, memory decline, loss of activities of daily living, 

a neural accumulation of tau and amyloid, and neuronal death, which manifest as 

profound atrophy of important brain regions. In order for one to be clinically diagnosed 

with AD, one needs evidence of memory loss and a deficit in at least one other cognitive 

domain, such as loss of executive function1.  

Historically, AD brain pathology has been characterized by an accumulation of 

two primary protein aggregate suspects gone awry: extracellular beta-amyloid (Aβ) 

plaques and intracellular neurofibrillary tangles (NFT) 2. This led to the amyloid cascade 

hypothesis, whereby amyloid precursor protein (APP) undergoes cleavage by proteolysis 

resulting in beta-amyloid fragments that clump together and form plaques, with increased 

concentrations found in the AD brain 2,3. More recently, the hypothesis has evolved to 

state that perhaps the Aβ that is not isolated in plaques actually drives the disease 4 and 

thus also plays a role in hippocampal function and long-term potentiation (LTP)5. 

 Tau is a microtubule-associated protein (MAP), and through various mechanisms 

becomes hyperphosphorlyated in AD and in the vast majority of research is thought to 

contribute to neurodegeneration by disrupting normal tau proteins 6. However, recent AD 

research aims to debate the extent of how bad tau hyperphosphorylation really is, with it 

providing probable cause that some tau phosphorylation may be neuroprotective and 

actually combat against Aβ-induced excitotoxicity7. Research has proposed that Aβ 

plaques have the ability to trigger the formation of toxic tau tangles, which results in the 
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two aggregates working together to disrupt normal cell function and signaling pathways 

in the brain 8,9. Today, while Aβ plaques and NFT are the only hallmark lesions that are 

being used for clinical diagnosis, with a certain number of lesions being required for 

diagnosis 1,3, new proteomics research has suggested a vastly different paradigm to fully 

understand the many factors that contribute to the etiopathogenesis and progression of 

AD rather than the single “amyloid and tau” pathology hypothesis10.   

There is a current rise in AD prevalence, with research projecting that by the year 

2050 one new case of AD will develop every 33 seconds and nearly 1 million new people 

will develop it annually in the United States11. The total costs for caring for this 

AD/dementia related population in 2011 was around $186 billion per year in the United 

States and is slated to increase to about $1.1 trillion dollars per year by 205012. The aging 

baby boomer generation, along with an increased life expectancy, is what will largely 

propel the drastic increase in AD rates. Research efforts have been focused on the 

biological implications in this disease, as well as potential therapies that could prevent or 

delay it. Currently, there are no effective preventative treatments or cures for AD, only 

symptomatic remedies13. While most of the therapies in research are aimed at targeting 

the classical Aβ plaques and Tau tangles, other mechanisms of pathological treatments 

that could decrease Aβ and Tau tangles as a secondary effect and block progression of the 

disease are focusing on modulation of oxidative damage, cholesterol homeostasis and 

inflammation13.  

 

 

 



www.manaraa.com

	
   5	
  

Neurodegenerative Pathology 

AD is typified by progressive medial temporal lobe (MTL) atrophy and memory 

decline14. Neurodegenerative processes that contribute to this occur in specific brain areas 

like the neocortex and limbic system and are characterized by synaptic damage and 

neuronal death, with these changes corresponding to the classical cognitive impairment 

and memory loss associated with AD10,15. AD neurodegeneration also results in decreased 

synaptic plasticity and neurogenesis, which reveals that the etiopathogenesis of AD on 

the brain could affect two neurophysiological factors: a degradation of mature neurons 

and a decreased generation of new, functional neurons15.  

The molecular process of synaptic plasticity, specifically the formation of new 

synaptic connections, an alteration of gene expression and increased protein synthesis, is 

a crucial component to the conversion of a short term memory to the storage of a long 

term memory in the brain, specifically in the hippocampus, located in MTL16–18. The 

modulatory physiological process of synaptic plasticity is a complex mechanism that 

consists of inotropic glutamate receptors, N-methyl-D-aspartate (NMDA) and α-­‐‑amino-­‐‑

3-­‐‑hydroxy-­‐‑5-­‐‑methyl-­‐‑4-­‐‑isoxazolepropionic	
  acid (AMPA), cohesively having an impact 

on the post-synaptic response to allow for acquisition of memory in the hippocampal 

region 19–21. Decades ago, scientists discovered the neurophysiology of how synaptic 

plasticity contributes to LTP, a mechanism that occurs along the perforant path, a known 

neural pathway that connects the entorhinal cortex to the hippocampal region and is 

important in mediating the processes of both spatial memory learning and 

consolidation22.  It is important to understand that effects on the storage of information 

encoded through synapses in the brain arise from changes in synaptic plasticity on a 
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specific set of neurons, rather than on one synapse23. The synaptic plasticity and memory 

hypothesis (SPM), first characterized by Martin et al 24 proposes that the concept of 

memory formation occurs through a reactivation of ‘traces’ of memory, which is based 

on changes in the strength of synapses, effectively known as activity-dependent synaptic 

plasticity 25.  Long term potentiation and long term depression (LTD), a strengthening 

and weakening of the efficacy of synapses respectively, occurs at synapses through an 

activation of neurotransmitter receptors like NMDA and post-synaptic Calcium (Ca2+) 

concentrations, with the amount of synaptic strength proportional to the their levels23. 	
  

The modality for the degradation of synapse function in AD is still not understood 

and further research is needed to understand the physiology behind the loss of synaptic 

transmission that underlies cognitive deficits26. There is a current amyloid hypothesis that 

proposes that synaptic toxicity, which is a result of Aβ oligomers, causes AD and leads to 

synaptic degradation and loss27,28. Both pathological cognitive disorders and age-related 

cognitive decline seem to be similarly related to the levels of synaptic plasticity that 

decrease over time, with the same neurobiological mechanism that occurs in AD 

paralleling what happens in normal aging, just to a greater extent. One study by Van 

Guilder et al. used an animal model to test their previous hypothesis, in which a decrease 

in synaptic transmission will correspond with decreased cognitive decline in aged rats 

versus adult rats29.  In their study, they found that in aged rats the level of dysfunctional 

synaptic plasticity proteins that were expressed had a direct effect on hippocampal-

dependent memory and learning functions, with lower expression related to decreased 

cognition29.  
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It has also been concluded that inhibitory regulation of synaptic genes in the 

biological pathways of AD, including the pathways of inflammation, oxidative stress, 

energy homeostasis and synapse transmission, is affected by the risk factor of age and is a 

crucial factor in the development and progression of AD30–32. Changes in synaptic 

strength are mostly attributed to glial cells of the immune system, also known as 

astrocytes, because they contain neurotransmitter receptors that can regulate synaptic 

plasticity and transmission through a multitude of mechanisms that function to alter 

neuronal physiology33. 

It has become increasingly important to find novel, immunological biomarkers 

that can track AD development and progression. Neuroinflammation may be a useful 

process to examine, as it is an early and continuous feature of AD34 that underlies 

neurodegeneration and cognitive deficits35. The study of proteomics has the potential to 

reveal predictive biomarkers that underlie many of the molecular pathways associated 

with etiology of AD, and aid in early diagnosis and treatments as well as the diagnosis of 

patients progressing from mild cognitive impairment (MCI) to AD10. More research 

needs to be conducted to analyze how to prevent or treat cognitive impairment by 

repairing synaptic plasticity alterations that occur with age-related/AD-related cognitive 

decline29. 

 

Neuroinflammation 

In 2015, the emergence of neuroinflammation as a probable cause in the 

pathology of AD, prompted the Alzheimer’s Association Roundtable to meet and analyze 

its mechanistic contributions to the etiopathogensis and progression of AD. They 



www.manaraa.com

	
   8	
  

concluded that there is a very present need for scientific research to advance the 

understanding of the molecular patterns of neuroinflammation that underlie the various 

stages of AD, and to find novel biomarkers of inflammation and innate immunity that 

could be used in the therapeutic prevention and treatment of AD 36. 

There is widespread evidence for the role of neuroinflammatory mechanisms to 

underlie the neurodegenerative processes of AD37. Neurotoxic inflammatory mechanisms 

may initiate AD pathogenesis38. It is thought that chronic inflammation may even precede 

Aβ and tau pathology in late-onset AD39. Neuroinflammation, on the cellular subunit 

level, occurs through the release of pro-inflammatory cytokines such as tumor necrosis 

factor-α (TNF-α), Interleukin-1β (IL-1β), and Interleukin-6 (IL-6) primarily from 

microglia, but also astrocytes, brain endothelial cells (BECs), and neurons 

themselves38,40–42. Levels of these cytokines and downstream effectors are higher in the 

AD brain43 and may mediate neural atrophy over time41. This activity potentiates 

mitochondrial degradation and cell damage via release of reactive nitrogen and oxygen 

species39. Other complex factors modulate these responses, including complement 

proteins, anti-inflammatory cytokines, macrophage colony-stimulating factor (M-CSF), 

C-reactive protein (CRP), and S100𝛽 34.  

Microglial activation is most often potentiated in AD by Aβ peptides, 

neurofibrillary tangles, and neuronal cell degradation38. Microglia, the immune cells of 

the brain, are also known as the macrophages of the CNS with prominent roles in 

homeostatic regulation of synaptic plasticity and neuronal pathways and in initiation of 

neuroinflammation through a release of inflammatory mediators36. Microglia have been 

implicated to exercise roles in the healthy CNS through neurogenesis and synapse 
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formation, further highlighting their role in synaptic plasticity modulation and 

neurophysiological homeostasis44,45. Furthermore, microglial cells have come to be 

known as a “double-edged sword” based on their level of activation, as they can alter 

their phenotype based on a healthy state or neurodegenerative state, with the latter 

propelling microglia to retract and instigate phagocytosis causing them to lose their 

homeostatic, synaptic regulation36,45,46. 

Many studies now attribute the regulation of Aβ-induced neuroinflammation to 

AD genetic risk factors like Apolipoprotein E (APOE), where AD patients with the 

APOE ε4 allele have increased brain inflammation, amyloidosis, and microglial 

activation38,47,48. This cyclic process of activating cytokines and Aβ plaques, which can 

subsequently increase APOE expression and amyloid deposition, is thought to be an 

initial inflammatory mechanism that plays a role in AD etiopathogenesis34,49. However, 

while classic pro-inflammatory cytokines such as IL-1β and IL-6 can potentiate brain 

atrophy, they are not necessarily ideal AD biomarkers. For example, pro-inflammatory 

cytokines at lower concentrations induce and maintain hippocampal LTP and neural 

plasticity, brain homeostasis, plaque clearance via activated microglia, and tissue repair 

34,50–52, where these effects are impaired at higher concentrations53. Since many molecules 

of the immune system can demonstrate opposite functions, neuropathological 

characterization of neuroinflammation provides little information on its actual role in AD 

pathogenesis39. Therefore, there is no easily labeled “detrimental” phenotype based on 

the expression of pro-inflammatory cytokines by activated microglia in the brain54, as 

they exercise context-dependent pleiotropic effects based on concentration, which can 

vary considerably within and across individuals55. Furthermore, these inflammatory 
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mediators are inherently context-dependent, allowing for multifunctional roles in the 

innate immune system48,55. These paradigms highlight the difficulty in selecting effective 

pro- or anti- inflammatory biomarkers to detect and track AD. Some studies hypothesize 

that a more effective intervention would be to re-balance inflammatory signals to limit 

AD progression56–58 as a result of the complex immunological mechanisms that 

participate in the inflammatory processes resulting from an activated microglial event 

such as aging or brain injury49,59 

 

Pro-Inflammatory Mechanisms: A Role for Pentraxins and Related Biomarkers 

It is also important to consider other pro-inflammatory modulatory mechanisms 

that do not induce chronic neuroinflammation. For example, synaptic plasticity in MTL is 

in part regulated by the pentraxin superfamily, such as neuronal pentraxin 2 or NPTX260. 

Specifically, NPTX2, also known as neuronal-activity regulated protein (NARP), 

facilitates excitatory synapse formation, learning, and memory by clearing extracellular 

debris to anchor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

channels60–62 . In general, pentraxins, including NPTX2, have been understudied in past 

scientific research with few efforts being done to understand their cellular and 

physiological mechanisms. An underlying theme of the pentraxin research that has been 

conducted has found that they play a prominent role in neuronal synaptic plasticity and 

LTP as a novel immediate-early gene (IEG)61,63. Established research has revealed that 

the storage of long-term memories are modulated by structural and synaptic changes 

through a cAMP-activation of IEG’s16.   One study found that nptx2b, the gene for 

NPTX2 in zebra fish, is able to modulate synaptic plasticity in hyporcretin/orexin 
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(HCRT) neurons through circadian regulatory mechanisms64, which are affected by both 

circadian clock balance and sleep deprivation. The concentration of NARP, a protein in 

rats homologous to NPTX2, is increased in the adult cortex and hippocampus of the brain 

with roles in neuronal growth, synaptic physiology and the associated LTP that arises 

from NMDA receptor activation63. One study concluded that NARP, as well as other 

associated pentraxins like Neuronal Pentraxin 1, interact and correspond to synaptic 

plasticity in the brain through association with AMPA type glutamate receptors, from 

development through adulthood 65. NPTX2 has the potential to predict progression of 

MCI to AD because this biological protein is a marker in cerebrospinal fluid (CSF) of 

both neuronal degradation and synaptic loss 10. NPTX2 mRNA expression has also been 

found to be upregulated in neurons and glia of the substania niagra and frontal cortex in 

Parkinson’s Disease (PD), another neurodegenerative disorder, and is thought to play 

roles in PD dysfunction as a result of synaptic alterations in the cerebral cortex66. 

Historically, both the pentraxins and receptor (NP1, NPTX2 and NPR) had been 

proposed to function similar to acute phase proteins in the acute phase of immunity by 

binding and clearing extracellular pathogens, synaptic debris and toxins from the 

neurons, further elucidating their role of protection and modulation of synaptic 

plasticity67,68. Pentraxins have the ability to recognize damaged cells and instigate 

apoptosis to clear away cellular debris69. Indeed, neuronal pentraxins exercise activity-

dependent synaptic plasticity roles in both neuronal and retinal cells as a result of their 

ability to mark synaptic sites for degradation and cellular turnover68. The pentraxin 

family is characterized by a structural motif called a pentraxin domain70.  New research 

has elucidated the pentraxins’ physiological regulatory effects on the immune system, 
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inflammation, homeostasis and apoptosis69,70. Neuronal Activity-Regulated Pentraxin 

(NARP) has also been linked to the pentraxin known as C-reactive protein (CRP) of the 

acute phase response due to many similarities in pentraxin structure and its function as a 

calcium-dependent lectin63.  

While there is an obscure amount of research that has been done on NARP and 

pentraxins in general, there is a wealth of research about CRP in the field of immunology 

and inflammation. CRP, a proinflammatory regulatory protein and a known activator of 

the complement C system in the acute phase response of immunity71, is speculated to 

have a protective mechanistic role as it is able to modulate and balance inflammatory 

reactions via activation or deactivation of the C system72. CRP, notably the first pattern-

recognition molecule (PRM) to be discovered, is an immunological pentraxin of humoral 

innate immunity that can lead to an activation of adaptive immunity and tissue repair69. 

As microglial activation is also important for potentiating specific aspects of AD 

pathogenesis73, related biomarkers have been investigated such as Chitinase 3-like 

Protein 1 (C3LP1). C3LP1, a derivative of chitin protein, is a marker of 

macrophage/microglial activation74–79 . Serum and CSF C3LP1 levels are increased in 

preclinical and early AD74,80, further suggesting its potential utility. 

 

Proteomics Research 

Peptidomics and multiplex techniques may reveal novel immunological 

biomarkers of chronic neuroinflammation or other processes that best predict MTL 

atrophy and memory decline.  There is a current need of a disease-modifying therapy for 

AD13. Due to the multifaceted etiopathology of AD, new proteomics research is needed 
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to advance the understanding and diagnostic tools of this disease by looking at molecular 

mechanisms and the physiology underlying this disease10. Analysis of biochemical 

markers that can be used to diagnose the various stages of this disease, as well as 

elucidation of neurobiological changes that occur throughout AD, are vital to advancing 

this field10. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1. Participants 

Baseline mass spectrometry and multiplex data from ADNI were available for 86 

cognitively normal (CN), 135 Mild Cognitively Impairment (MCI), and 64 AD 

(adni.loni.usc.edu). The following ADNI data were also available for this cohort: 

1. Demographics including age, sex and education; 

2. Clinical diagnosis at baseline and month 24, as well as MCI conversion; 

3. MRI scans; 

4. CSF A𝛽1-42, total tau, and phosphorylated tau (p-tau181); 

5. Apolipoprotein E (APOE) ε4 genotype;  

6. Global cognitive measures and factor scores. 

By month 24, MCI participants were classified as either remaining stable (MCI-S, 

n =82) or progressing to AD (MCI-P, n =47), with the remainder diagnosed as CN. 

Details of the consensus procedure by the ADNI Conversion Committee are described 

elsewhere81. We chose to focus on month 24 as an endpoint for comparison to our 

previous work81, and because there is much less MRI data available after month 24. 

 

3.2. Standard Protocol Approvals, Registrations, and Patient Consents 

Written informed consent was obtained from all ADNI participants at their 

respective ADNI sites. Site-specific institutional review boards approved the ADNI 

protocol. 
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3.3 Clinical and Cognitive Assessments 

Global cognition and assessment scores for the Mini-Mental State Examination 

(MMSE), clinical dementia rating-sum of boxes (CDR-sob) and AD assessment scale-

cognitive subscale 11 (ADAS-cog11) were examined at baseline and at 6, 12, and 24 

months. Diagnoses were made by ADNI based on criteria described in the ADNI1 

procedure manual (http://adni.loni.usc.edu/). A memory factor score82 was also examined 

at baseline and longitudinally. Memory decline was defined as difference scores between 

baseline and either 6, 12, or 24 months after. Memory factor data from baseline to months 

12 and 24 was missing for 0 and 27 participants respectively. 

 

3.4. CSF Amyloid and Tau 

CSF sample collection, processing, and quality control of p-tau181, total tau, and 

A𝛽1-42 are described in the ADNI1 protocol manual (www.adni.loni.usc.edu) and 

elsewhere83. Total tau and A𝛽1-42 values were not available for 3 and 1 participants 

respectively. 

 

3.5. Mass Spectrometry and Multiplex Biomarkers in CSF 

Data was downloaded from the Biomarkers Consortium CSF Proteomics liquid 

chromatography/ multiple reaction monitoring mass spectrometry (LC/MRM-MS) 

dataset. As described previously84, the ADNI Biomarkers Consortium Project 

investigated the extent to which selected peptides, measured with LC/MRM-MS, could 

discriminate among disease states. Briefly, 567 peptides representing 221 proteins were 

targeted in a single run (Caprion Proteome Inc., Montreal, QC, Canada). Raw intensities 
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were derived and extensive quality control used to derive log intensities. The ADNI 

Biomarker core used the natural log to transform analyte values to normalize variance in 

the sample. Nine neuroinflammatory biomarkers were present, represented by 21 CSF 

peptides. A larger CSF multiplex array, containing 27 additional pro-inflammatory 

biomarkers (Supplemental Table 1), was also utilized for comparison to LC/MRM-MS 

(see below).  

For the LC/MRM-MS panel, the nine biomarkers of interest were: Alpha-1-

antitrypsin; Complement 3; CD14; IL-18; C3LP1/YKL-40; Osteopontin; C-Reactive 

Protein (CRP); Neuronal Pentraxin 1 (NPTX1); and NPTX2. Supplemental Text 1 

describes all nine derived peptides and protein functions specific to inflammation. 

Different peptides from a single protein were selected as candidate biomarkers based on 

peptides that best predicted diagnostic status84, or using stepwise regression analyses and 

follow up validation tests (see below). Due to the relatively small number of pro-

inflammatory indices in the LC/MRM-MS peptide biomarker panel, we also explored if 

mass spectrometry analytes selected from that panel were again selected when 

simultaneously testing protein biomarkers from the larger CSF multiplex assay. Briefly, a 

Luminex xMAP immunoassay panel (Rules Based Medicine, Austin, TX) was used to 

measure 159 CSF analytes, including several pro- and anti-inflammatory proteins. As 

shown in Supplemental Table 1, 27 CSF proteins were selected based on the literature 

linking them to one or more inflammatory processes. 
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3.6. MRI and Tensor Based Morphometry 

T1-weighted volumes at baseline and months 6, 12, and 24 were downloaded. 

Bilateral MTL gray matter (GM) volume was derived, as it shows reliable atrophy over 

the AD spectrum and is susceptible to neuroinflammation85. Baseline images were 

processed using FreeSurfer 4.3 as described previously (see “UCSF FreeSurfer Methods” 

at www.adni.loni.usc.edu). Fifty-five baseline scans were rejected for analysis based on 

failed QC checks. Tensor Based Morphometry (TBM) was used to gauge atrophy over 

time. Jacobian maps were generated between baseline and either month 6, 12, or 24 

volumetric scans86. Degree of contraction was expressed as a percentage decrease relative 

to baseline, reflecting progressive brain atrophy. T1-weighted scans at months 6, 12 and 

24 were missing for 13, 18 and 58 participants respectively.  

 

3.7. APOE Genotype 

The ADNI Biomarker core at the University of Pennsylvania conducted APOE ε4 

genotyping. We characterized participants as being “non-APOE4” (i.e., zero APOE ε4 

alleles) or “APOE4” (i.e., one to two APOE ε4 alleles).   

 

3.8. Statistical Analyses 

All statistical mixed model analyses were conducted using SPSS 23.0 software 

(IBM Corp., Armonk, NY). All variables had homoscedastic variance and were normally 

distributed or log transformed. 
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3.8.1. Stepwise Regression: Biomarker Selection 

The nine peptide biomarkers of interest (See Section 2.5) were screened using 

stepwise regression which, when used correctly, is useful for variable selection and 

model building87,88. The first goal was to determine which inflammation-related 

LC/MRM-MS biomarkers were significant predictors of MTL volume and memory 

performance at 24 months. A subsequent goal was take selected mass spectrometry 

biomarkers and use stepwise regression while incorporating multiplex proteins, to see if 

MRM peptides and/or multiplex proteins were selected for model building. Covariates 

were entered into a given model as the first step. The nine peptide analytes representing 

nine candidate proteins were added in a stepwise step. In models with multiplex 

biomarkers, they were added in a subsequent stepwise step. The default threshold of 

P<.05 for inclusion and P>.10 for exclusion of variables were used. Based on these 

regression analyses (see Section 3.2 in Results), NPTX2 and C3LP1 were the only 

consistently significant biomarkers, and thus became the main predictor variables for the 

focus of our study. Stepwise regression iterates through each potential biomarker and 

removes it from the model if P>.10, minimizing the need for type 1 error correction. 

 

3.8.2. Linear Mixed Models: Biomarker Testing on Outcomes 

The two selected peptide biomarkers, NPTX2 and C3LP1, were subsequently 

analyzed with linear mixed models, to determine their baseline and longitudinal 

associations with GM atrophy in bilateral MTL or a memory factor. We used a single 

model to examine the main effects of NPTX2 and C3LP1 at baseline, or their interaction 

with Time longitudinally, on global cognition, memory, and bilateral MTL volume. Time 
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was defined as change relative to baseline at months 6, 12, and 24. Similar analyses were 

conducted for global cognition, Clinical Dementia Rating (CDR), and CSF amyloid and 

tau. Longitudinal analyses of CSF tau, p-tau181 and A𝛽1-42 were not performed due to 

lack of longitudinal ptau-181 data in ADNI. Again, the CSF samples of NPTX2 and 

C3LP1 used for our statistical analyses were derived from the LC/MRM-MS (see Section 

2.5). 

Linear mixed models, followed by least significant differences (LSD) follow-up 

tests, also gauged if CSF NPTX2 or C3LP1 levels differed by baseline diagnosis (CN, 

MCI, or AD) or MCI conversion (MCI-S or MCI-P). All subsequent models except for 

cognitive outcomes included the following covariates: age at baseline, education, sex, 

APOE ε4 genotype, and either baseline diagnosis or MCI conversion. Mixed models also 

covaried the random effect of subject. Models gauging global cognition, the CDR 

assessment, and the memory factor did not covary baseline diagnosis or MCI conversion, 

because these measures are directly used to diagnose participants as CN, MCI, or AD or 

are direct outcomes of disease diagnosis.  

Finally, on an exploratory basis, interactions were examined between both 

NPTX2 and C3LP1 and covariates that were statistically related to them, including 

APOE ε4 genotype, age, and education.  
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CHAPTER 4: RESULTS 

4.1. Demographics and Inflammation Biomarkers 

Table 1 lists demographics, APOE ε4 genotype data, and other baseline sample 

characteristics. Based on subsequent analyses, log-transformed CSF analyte levels of 

NPTX2 (TESTLNALLQR) and C3LP1 (ILGQQVPYATK) are noted.  

 

Table 1. Demographics and Summary Indices 
 
Abbreviations: AD, Alzheimer’s disease; ADAS-cog11, AD Assessment Scale-Cognitive 
Subscale; APOE4, apolipoprotein ε4 allele status; C3LP1, Chitinase 3-like Protein 1; 
CDR-sob, Clinical Dementia-Rating Sum of Boxes; MMSE, Mini-Mental State 
Examination; NPTX2, Neuronal Pentraxin 2. 
Note: Variables are shown as mean ± standard error or frequency count.  

        CN (n=86) MCI (n=135) AD (n=66) MCI-S (n=82) MCI-P (n=47) 
Age 75.70 ± 5.54 74.69 ± 7.35 74.98 ± 7.57 74.77 ± 7.37 74.64 ± 7.40 

Education 15.64 ± 2.97 16.00 ± 2.96 15.11 ± 2.96 15.78 ± 3.19 16.32 ± 2.58 

Sex (F,M) 42, 44 44, 91 29, 37 22, 60 20, 27 

APOE4 (-/+) 65, 21 64, 71 19, 47 41, 41 20, 27 

CDR-sob 0.02 ± 0.11 1.56 ± 0.88 4.34 ± 1.56 1.52 ± 0.87 1.65 ± 0.94 

MMSE 29.05 ± 1.02 26.91 ± 1.74 23.52 ± 1.85 26.98 ± 1.68 26.85 ± 1.81 

ADAS-cog11 6.05 ± 2.90 11.72 ± 4.33 18.88 ± 6.71 11.52 ± 4.33 12.33 ± 4.34 

Memory Factor 0.98 ± 0.50 -0.15 ± 0.57 -0.91 ± 0.55 -0.10 ± 0.56 -0.26 ± 0.57 

C3LP1 23.03 ± 0.03 23.13 ± 0.02 23.20 ± 0.03 23.14 ± 0.03 23.10 ± 0.03 

NPTX2 10.70 ± 0.08 10.62 ± 0.06 10.31 ± 0.09 10.71 ± 0.09 10.43 ± 0.11 
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4.2. CSF Inflammatory Biomarker Selection (Stepwise Regression) 

As a first step, stepwise regression was used to select inflammatory biomarkers 

that best predicted memory decline and atrophy by 24 months. As described in 

Supplemental Text 1, 9 peptides representing 9 proteins were chosen as candidate 

inflammatory biomarkers. All peptides were log-transformed by the ADNI Biomarker 

Core to achieve normality84. Results were similar when considering the outcomes at 12 

months, or when all 21 peptide analytes were entered into the stepwise step for month 24.  

For memory performance by 24 months, covariates accounted for a moderate 

proportion of variance [Adjusted R2=.164, F=11.10, P<.001]. Stepwise selection of 

NPTX2 [Adjusted R2=.202, F-change=12.91, P<.001] and then C3LP1 [Adjusted 

R2=.215, F-change=5.17, P<.001] significantly improved the model. Using 10 random 

samples of 50% of the cohort or Lasso regression to validate model selection 

(Supplemental Text 2), NPTX2 and C3LP1 were consistently selected as the only 

significant predictors.  

For MTL volume by 24 months, a similar pattern emerged. Covariates initially 

explained nearly half of the variance [Adjusted R2=.477, F=42.27, P<.001]. NPTX2 

[Adjusted R2=.514, F=17.62, P<.001] and subsequently C3LP1 [Adjusted R2 = .546, F-

change=16.79, P<.001] were again selected as the only significant predictors. Using 

stepwise regression with random sampling or Lasso regression to validate the model 

(Supplemental Text 2), NPTX2 and C3LP1 were again selected as the only significant 

predictors.  
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Finally, as described in Supplemental Text 3, NPTX2 and C3LP1 were selected 

in the stepwise step when they were iteratively added into a model with 27 CSF proteins 

related to inflammation from the multiplex immunoassay (Supplemental Table 1). 

These results suggest that NPTX2 and C3LP1, respectively biomarkers of inflammation-

mediated excitatory synaptic plasticity60 and macrophage/microglia80 activity, may be 

useful for tracking AD neuropathology and cognitive decline and should be investigated 

further. 

 

4.3. Effects of Diagnosis and Covariates on NPTX2 and C3LP1 (Mixed Models) 

Having selected NPTX2 and C3LP1, their associations with clinical diagnosis and 

covariates were then ascertained with linear mixed models. There was a main effect of 

baseline diagnosis on NPTX2 [F=4.120, P=.017]. Table 1 indicates a modest step-wise 

decrease in log-transformed NPTX2 levels from CN to AD [P=.005] and MCI to AD 

[P=.034], but not CN to MCI [P=.242]. MCI-P had lower NPTX2 levels than MCI-S 

[F=4.04, P=.047]. A main effect of baseline diagnosis on C3LP1 was also significant 

[F=3.32, P=.037]. Table 1 indicates a modest step-wise increase in log-transformed 

C3LP1 levels from CN to AD [P<.001], MCI to AD [P=.045] and CN to MCI [P=.002]. 

MCI-S and MCI-P did not differ for C3LP1 values [F=0.358, P=.551].  

For covariates, on an exploratory basis, APOE4 carriers had higher C3LP1 

[F=7.81, P=.006], but similar NPTX2 values [F=0.15, P=.696]. Older age at baseline was 

related to higher C3LP1 [R2=.391, F=63.91, P<.001], but not NPTX2 [F=0.38, P=.539]. 

There was a trend for more years of education predicting higher NPTX2 [F=1.77, 
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P=.053], but not C3LP1 [F=1.00, P=.317]. Sex was not a significant predictor for NPTX2 

[F=0.01, P=.973] or C3LP1 [F=1.32, P=.251].  

 

4.4. Neuropsychological Testing: Baseline and Over 24 Months (Mixed Models) 

Next, the associations of NPTX2 and C3LP1 were investigated with baseline and 

longitudinal indices of global cognition and function, as well as memory with linear 

mixed models. As shown in Figure 1, higher baseline NPTX2 and C3LP1 levels were, 

respectively, related to better and worse baseline global cognitive and assessment 

outcomes. Specifically, higher NPTX2 levels were correlated with higher MMSE 

[β±SE=1.24±0.22, F=32.85, P<.001], lower CDR-sob [β±SE=-0.81±0.15, F=28.22, 

P<.001] and lower ADAScog-11 [β±SE=-3.34±0.54, F=38.40, P<.001] (Figure 1A,C,E). 

Higher C3LP1, conversely, was associated with lower MMSE [β±SE=-1.43±0.37, 

F=15.26, P<.001], higher CDR-sob [β±SE=1.18±0.26, F=21.13, P<.001], and higher 

ADAS cog-11 scores [β±SE=4.45±0.92, F=23.55, P<.001] (Figure 1B,D,F). Similar 

patterns were seen across time (see Supplemental Text 4).  
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Figure 1. Mass Spectrometry Biomarkers and Baseline Global Cognition 

Associations between baseline global cognitive and assessment outcomes with baseline 
CSF NPTX2 or C3LP1. Blue and red circles respectively correspond to NPTX2 and 
C3LP1 CSF values in predicting MMSE (A,B), CDR-sob (C,D), and ADAS-cog11 (E,F). 
The R2 value reflects the proportion of variance in cognitive scores explained by each 
biomarker. Covariates included age at baseline, sex, Apolipoprotein ε4 genotype, and 
education. ADAS-cog11, Alzheimer’s Disease Assessment Scale-cognitive subscale 11; 
C3LP1, chitinase-3-like-protein 1; CDR-sob, Clinical Dementia Rating sum of boxes; 
MMSE, Mini-Mental State Examination; NPTX2, neuronal pentraxin 2.  
 
 
 

For the memory factor, higher NPTX2 and C3LP1 at baseline respectively 

corresponded to better [R2=.051, F=11.76, P<.001] or worse [R2= .072, F=9.67, P=.002] 
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baseline performance. A NPTX2 x Time [F=8.88, P<.001] interaction revealed that 

higher baseline NPTX2 strongly corresponded to less memory decline over time relative 

to baseline, particularly by month 24 where NPTX2 explained 56% of the variance 

(Figure 2). By contrast, a C3LP1 main effect [F=8.851, P=.003], with a non-significant 

C3LP1 x Time interaction [F=1.73, P=.180], indicated that higher baseline C3LP1 

showed a weak association (R2=.04) with memory decline regardless of time. See 

Supplemental Figure 1 for a trajectory curve showing predicted change in memory 

decline over time for NPTX2. As a confirmation analysis using 10 randomized iterations 

of 50% of the sample (Supplemental Text 5), relative effect sizes and P values for 

NPTX2 and C3LP1 were comparable. Exploratory interactions with covariates revealed 

no significant effects. 

 
 
 

 
 
Figure 2. NPTX2 and Memory Performance across Time 
 
Associations between baseline NPTX2 and change over time for the memory factor score 
relative to baseline at months 6 (A), 12 (B), and 24 (C) thereafter. Blue circles 
correspond to NPTX2 values. The R2 reflects the proportion of variance in the memory 
factor as explained by NPTX2. Covariates included the fixed effects of age at baseline, 
sex, APOE ε4 genotype, and education, as well as the random effect of subject. NPTX2, 
neuronal pentraxin 2. 
 
 



www.manaraa.com

	
   26	
  

4.5. Brain: Baseline MTL volume and Atrophy over 24 Months (Mixed Models) 

Next, the associations of NPTX2 and C3LP1 were investigated with baseline 

MTL volume and longitudinal, cumulative MTL atrophy relative to baseline with linear 

mixed models. Higher baseline NPTX2 [R2=.050, F=6.91, P=.009] was correlated with 

more basal MTL volume. A NPTX2 x Time interaction [F=16.61, P<.001] showed that 

higher NPTX2 corresponded to less MTL atrophy over time, particularly by month 24 

(Figure 3A-C). By contrast, C3LP1 showed no association with MTL volume at baseline 

[R2=.008, F=0.05, P=.817]. A C3LP1 x Time interaction [F=12.09, P<.001] indicated 

that while baseline C3LP1 was slightly associated with atrophy over time, it was 

relatively modest compared to NPTX2 (Figure 3D-F). Supplemental Figure 2 shows 

trajectory curves for predicted change in MTL atrophy over time for NPTX2 and C3LP1. 

These results were confirmed (Supplemental Text 5) when testing models with 

randomly selected 50% sub-samples of the cohort. Exploratory interactions with 

covariates revealed no significant effects.  
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Figure 3. Mass Spectrometry Biomarkers and Medial Temporal Atrophy across Time 
 
Associations between baseline NPTX2 (A,B,C) or C3LP1 (D,E,F) and cumulative change 
in medial temporal lobe (MTL) gray matter (GM) volume, expressed as a percentage 
relative to baseline at months 6, 12, and 24 thereafter. The blue and red circles 
correspond to NPTX2 and C3LP1 values respectively. The R2 reflects the proportion of 
variance in MTL GM volume as explained by a given biomarker. Covariates included the 
fixed effects of age at baseline, sex, APOE ε4 genotype, and education, as well as the 
random effect of subject. C3LP1, chitinase-3-like-protein 1; NPTX2, neuronal pentraxin 
2. 
 

4.6. CSF Biomarkers: Baseline Amyloid and Tau (Mixed Models) 

Finally, it was important to gauge how NPTX2 and C3LP1 were related to 

amyloid and tau, which are hallmarks of AD, with linear mixed models. Higher NPTX2 

and C3LP1 were respectively related to a less or more AD-like CSF amyloid and tau 

profile. Specifically, higher NPTX2 was associated with higher CSF A𝛽1-42 

[β±SE=9.09±4.44 F=4.20, P=.041], lower total tau [β±SE=-23.89±4.07, F=34.43, 
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P<.001], and lower p-tau181 [β±SE=-4.34±1.45, F=8.93, P=.003]. By contrast, higher 

C3LP1 was not significantly associated with CSF A𝛽1-42 [β±SE=-9.52±7.48, F=1.61, 

P=.204], but corresponded to higher total tau [β±SE=25.67±6.87, F=13.96, P<.001] and 

higher p-tau181 (β±SE= 7.71±2.46,	
  F=9.83, P=.002].  

Finally, we explored interactions between C3LP1 or NPTX2 and age, education, 

and APOE ε4 genotype, given that the covariates predicted variation in C3LP1 and 

NPTX2. Supplemental Figure 3 shows that higher levels of NPTX2 were related to less 

amyloid pathology for non-APOE4 carriers [β±SE= 22.15±7.93, F=7.79, P=.006], but not 

for APOE4 carriers. No other interactions were significant.  
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CHAPTER 5: DISCUSSION & CONCLUSION 

The aim of our study was to explore which established or novel pro- and anti-

inflammatory CSF biomarkers from the ADNI Biomarker Core panels best predicted 

MTL atrophy and memory decline, as well as other AD indices affected by 

neuroinflammation. NPTX2 and C3LP1 consistently loaded as the only significant 

predictors of both MTL volume and memory performance by 24 months. They also 

predicted other AD aspects including global cognition and function, as well as CSF 

measures of amyloid and tau. Links with APOE4 status and age were found, where age 

has also been linked to chronic neuroinflammation over time due to age-related pro-

inflammatory effects on the brain89. Along the AD spectrum in our study, there was a 

modest step-wise increase in C3LP1 and decrease in NPTX2.  

These juxtaposed patterns are underscored by the global neuropsychological 

findings. As shown in Figure 1 and supplemental data, higher NPTX2 reflected a 

significantly less AD-like pattern of global function at baseline and relative decline 

through month 24, while higher C3LP1 modestly corresponded to a slightly more AD-

like pattern. Curiously by month 24, C3LP1 was a poor predictor for memory across 

time, while NPTX2 accounted for more than half of the variance among all participants. 

This could reflect NPTX2’s role in synaptic plasticity and long-term potentiation60,63,90. 

However, NPTX2 could merely reflect the AD process, while synaptic loss reliably 

accompanies dementia onset15,91,92. Higher NPTX2 similarly correlated with less MTL 

atrophy over time and AD neuropathology at baseline, further highlighting its potential 

use to track etiopathogenesis and progression. Non-APOE4 carriers showed a 

relationship between Aβ and NPTX2, while APOE4 carriers did not, suggesting that the 
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APOE risk factor may modulate the effect of NPTX2 or an upstream mechanism. It is 

unclear if NPTX2 exercises a causal or correlational effect on one or more neurological 

and cognitive aspects of AD. 

The lack of association of C3LP1 with memory scores may be due to its modest 

relationship with MTL atrophy over two years. Chronic neuroinflammation in AD arises 

from Aβ-dependent and independent activation of microglia and astrocytes93.The release 

of pro-inflammatory cytokines is thought to potentiate AD pathogenesis. It is clear in this 

report that higher baseline C3LP1 has some modest association with AD progression, as 

it is significantly corresponded to global cognition, tau, and AD risk factors such as age 

and APOE4 status. However, baseline levels of C3LP1 were not significantly related to 

CSF amyloid levels.  Sutphen and colleagues79 similarly found in middle-aged, 

cognitively normal participants that YKL-40 (i.e., C3LP1) levels increased with age and 

APOE4 status, where longitudinal but not baseline associations were seen with amyloid 

positivity. Kester and colleagues75 found that YKL-40 levels at baseline and 

longitudinally were higher in patients with MCI and AD.  

Our report is particularly novel because we investigated the degree to which 

NPTX2 and C3LP1 track neuropathology and memory decline over time along the AD 

spectrum. Several limitations and strengths should be noted. Protein expression of the 

NPTX2 and C3LP1 peptides cannot be validated in the current dataset, as ADNI CSF 

samples are not readily accessible. The ADNI Biomarker Core has only assessed peptides 

at baseline, where longitudinal collection is needed for future work. Thus, no causal 

inferences can be made, and results should be considered exploratory for driving 

hypothesis generation. To contain type 1 error, we chose to focus structural analyses on 
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MTL and consequent memory performance. It could be that C3LP1 is a better predictor 

for global atrophy or regions other than MTL. Finally, we only analyzed subjects in 

ADNI, where there are to our knowledge no other readily accessible AD datasets with 

mass spectrometry, MRI, and neuropsychological data. For strengths, this large sample 

size study used an unbiased stepwise selection process and follow up stepwise validation 

test to select candidate biomarkers in CSF.  We also highlight that NPTX2 was an 

excellent predictor of AD neuropathology and especially cognitive decline over time. 

In conclusion, NPTX2 is a novel immunological cytokine that accounts for 

several neurobiological and cognitive aspects of AD, particularly cognitive decline across 

the AD spectrum. The microglial biomarker C3LP1, by contrast, performed modestly or 

did not account for AD-related indices. This research may advance the current 

understanding of AD etiopathogenesis, while expanding early diagnostic techniques by 

using novel pro-inflammatory biomarkers such as NPTX2. 
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CHAPTER 6: SUPPLEMENTAL TEXT 

6.1. Supplemental Text 1 

See the embedded table below for the full list of 21 LC/MRM-MS analytes 

representing 9 proteins. Each of the inflammation biomarkers is briefly described. Given 

that multiple peptides represent a given protein in this panel, the selection process is then 

described for which peptide is used in stepwise regression analyses.  

 

Alpha-1-antitrypsin (A1AT) 

A1AT, also known as alpha-1 proteinase inhibitor (A1P1), inhibits and controls 

serine proteases for normal biological processes94. Through inhibition of proteolytic 

enzymes, it mediates inflammatory processes and prevents unwanted tissue breakdown. 

A1AT operates as an anti-inflammatory protein that regulates pro-inflammatory enzymes 

through covalent bonding, making it a poly-functional molecule. The efficacy of A1AT 

can be seen in its suppression of superoxide production by activated neutrophils, which 

reduces oxidant-driven inflammation in tissues. A1AT also has an anti-inflammatory role 

through its production and release of tumor necrosis factor−𝛼 (TNF𝛼). The A1AT 

(SVLGQLGITK) was selected because it was the only A1AT peptide to load in ADNI 

diagnostic prediction models84.  

 

CD14 

A glycoprotein of the innate immune system, CD14 is found on the surface of 

many Toll-Like Receptor 4 (TLR4) expressing cells, such as macrophages and 

neutrophils. It acts like a receptor for lipopolysaccharide (LPS) complexes and LPS-
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binding protein. It is involved in LPS-induced cytokine activation. It is also important for 

TNFA𝛼 expression95. CD14 is a functional protein that exhibits its effects through signal 

transmission for cytokines96. CD14 (SWLAELQQWLKPGLK) was selected because it 

was the only CD14 peptide to load in ADNI diagnostic prediction models84.  

 

Complement 3 (CO3) 

CO3 is a functional serum protein that plays a central role in the activation of the 

classic, alternative, and lectin pathways of the complement system, and promotes 

inflammation-induced immune reaction97. It beneficially influences innate immunity by 

promoting phagocytosis, supporting inflammatory responses, and instructing the adaptive 

immune response to select appropriate antigens for a humoral response. Uncontrolled 

activation of this peptide can also have negative effects. CO3 (IHWESASLLR) was 

selected because it was the only peptide to load for predicting MCI conversion84, and it 

best accounted for variance in memory decline and MTL atrophy by 24 months. While 

many other peptides were available for other complement proteins, CO3 is of central 

importance to regulating the complement system. 

 

Chitinase 3-like Protein 1 (C3LP1)/YKL-40 

C3LP1 is a pro-inflammatory cytokine found in inflammatory environments that 

is secreted by chondrocytes, differentiated macrophages, neutrophils, and synovial cells. 

It works to stimulate an inflammatory response from immune system cells and connective 

tissue cells. C3LP1’s pro-inflammatory effects are sequential to its inhibition of the vital 

processes of immune cell apoptosis78. Levels of this biomarker are found to be increased 
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in chronic inflammatory disorders78. Elevated levels of C3LP1 in CSF have recently been 

associated with chronic neuroinflammation and resultant conditions98. During 

neuroinflammatory processes, C3LP1 is found to be induced in astrocytes by the 

inflammatory cytokines IL-1𝛽 and TNF𝛼98. Inflammatory cytokines TNF and 

interleukin-1 can induce steady state levels of C3LP199. C3LP1 (ILGQQVPYATK) was 

selected because preliminary stepwise regression analyses suggested that it explained the 

most variance in memory decline and MTL atrophy by 24 months. 

 

Interleukin-18 (IL-18) 

IL-18 is a pro-inflammatory cytokine that establishes innate cell-mediated 

immunity and an inflammatory response in the body through T-cell activation, induction 

of Interferon 𝛾	
  (IFN𝛾), granulocyte macrophage (GM-CSF), TNF and IL-1 cells and up-

regulation of chemokine receptors100. It has been implicated to have increased levels in 

AD brains(Sutinen EM, 2012). IL-18 was found to increase amyloid-beta production, a 

hallmark of AD101. IL-18 acts bilaterally as a pro-inflammatory cytokine and as a strong 

inducer of atopic immune responses. IL-18 (LWEGSTSR) was the only available peptide 

for analysis. 

 

Osteopontin (OSTP) 

OSTP, a highly acidic secreted phosphoprotein, is found in bone and tissues. It is 

a regulator of immune system signaling and inflammatory responses through chemotactic 

cell recruitment to inflammatory sites. OSTP is expressed by various immune cells and is 

found to be upregulated in many immune system responses102. Immune modulation and 
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OSTP antibody production occur when OSTP acts as a cytokine through interaction with 

cellular and humoral receptors of the immune system. This protein is a participant in the 

pathogenesis of many autoimmune related diseases. OSTP (AIPVAQDLNAPSDWDSR) 

was the only available peptide for analysis. 

 

C-Reactive Protein (CRP) 

CRP is a pentameric serum protein made in response to IL-6 and whose levels 

markedly rise in response to systemic inflammation. CRP’s inflammatory response in 

chronic disease states is instigated by the release of pro-inflammatory cytokines. The 

primary role of CRP is to regulate acute inflammation by altering the equilibrium 

between pro- and anti-inflammatory cytokines and activating complement proteins103. 

CRP (ESDTSYVSLK) was the only available peptide for analysis. 

 

Neuronal Pentraxin 1 (NPTX1) 

NPTX1 is a protein of the neuronal long pentraxin family that is similar to the 

small pentraxins, such as CRP. It is homologous to NPTX2. It is produced by neurons in 

response to low activity, affecting mitochondrial function and contributing to 

neurodegeneration through apoptosis104. NPTX1 also plays a role in excitatory synaptic 

plasticity, where amyloid-beta treatment increases NPTX1 and leads to synapse loss105. 

NPTX1 has been labeled as a dual action protein as seen in it’s both beneficial synapse 

formation and negative neurodegeneration effects106. NPTX1 (LENLEQYSR) was the 

only peptide to load in ADNI diagnostic prediction model84.  
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Neuronal Pentraxin 2 (NPTX2) 

NPTX2, another secreted neuronal long pentraxin, functions primarily to facilitate 

excitatory synaptogenesis by facilitating aggregation of α-amino-3-hydroxyl-5-methyl-4-

isoxazole-propionate (AMPA) receptors. It is involved in formation of synapses, synaptic 

plasticity and plays a role in eradicating synaptic debris106. NPTX2 (TESTNALLQR) was 

selected for analysis based on its predictive value of distinguishing MCI from AD 

patients84. 

 
 
 

Protein Peptide 
A1AT AVLTIDEK 
A1AT LSITGTYDLK 
A1AT SVLGQLGITK 
CD14 AFPALTSLDLSDNPGLGER 
CD14 FPAIQNLALR 
CD14 SWLAELQQWLKPGLK 
CO3 IHWESASLLR 
CO3 LSINTHPSQKPLSITVR 
CO3 TELRPGETLNVNFLLR 
CO3 TGLQEVEVK 
CO3 VPVAVQGEDTVQSLTQGDGVAK 

C3LP1 ILGQQVPYATK 
C3LP1 SFTLASSETGVGAPISGPGIPGR 
C3LP1 VTIDSSYDIAK 
IL18 LWEGSTSR 

OSTP AIPVAQDLNAPSDWDSR 
CRP ESDTSYVSLK 

NPTX1 FQLTFPLR 
NPTX1 LENLEQYSR 
NPTX2 LESLEHQLR 
NPTX2 TESTLNALLQR 
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6.2. Supplemental Text 2 
Biomarker selection using randomized 50% sub-samples (stepwise regression and lasso 

regression) 
 

These supplemental analyses were done to further validate the stepwise selection 

of NPTX2 and C3LP1 as the only significant predictor variables using the full n=285 

sample. Validation occurred through 10 randomized iterations, where we split the sample 

by 50% to first conduct biomarker selection and model creation, followed by model 

validation using the other 50% of the sample. Specifically, for each randomized iteration, 

we put the 9 pro-inflammatory CSF mass spectrometry biomarkers into a stepwise block 

after entering covariates in the first block. Using inclusion and exclusion criteria of Alpha 

< .05 and Alpha > .10, we determined which biomarkers significantly loaded onto the 

model. For models where NPTX2 and/or C3LP1 loaded, we then conducted repeated 

measures linear mixed models, to see to what degree NPTX2 and/or C3LP1 predicted our 

outcomes of interest (memory decline; brain atrophy) at Months 0, 6, 12, and 24 (see 

Supplemental Text 5). 

The table below illustrates biomarker selection results for the 10 randomized iterations. 

Supplemental Text 2 Embedded Table. Biomarker Selection of 10 Random Iterations 

 

 
 
The table indicates that for predicting memory decline at month 24, stepwise regression 

selected C3LP1 7 out of 10 random iterations and NPTX2 8 out of 10 random iterations. 

Memory Atrophy
Iteration 1st biomarker 2nd biomarker 3rd biomarker Iteration 1st   biomarker 2nd biomarker 3rd biomarker 4th biomarker

1 NPTX2 C3LP1 IL-18 1 NPTX2 C3LP1
2 NPTX2 C3LP1 2 NPTX2 C3LP1
3 NPTX2 C3LP1 3 C3LP1 CD-14
4 NPTX2 Osteopontin 4 NPTX2 C3LP1
5 None None 5 NPTX2 C3LP1 A1antitropsin
6 NPTX2 C3LP1 6 NPTX2 C3LP1
7 NPTX2 C3LP1 7 CRP
8 NPTX1 C3LP1 IL-18 8 NPTX2 C3LP1
9 NPTX2 C3LP1 9 NPTX2 C3LP1
10 NPTX2 10 NPTX2 C3LP1 CD-14 Osteopontin
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For temporal atrophy at month 24, stepwise regression selected C3LP1 9 out of 10 

random iterations and NPTX2 8 out of 10 random iterations. When selected, NPTX2 and 

C3LP1 loaded as the first and second selected biomarkers respectively. These results 

suggest that NPTX2 and C3LP1 consistently loaded onto the model, validating their 

selection using the full cohort.  

In addition to our 50%/50% model selection and validation, we also performed 

Lasso regression for both temporal atrophy and memory decline. Lasso regression 

confirmed that NPTX2 and C3LP1 were consistently selected as the only significant 

predictors in the first six most stringent statistical models tested (tables not shown). These 

Lasso analyses further validated our initial stepwise regression process using the full 

sample and our supplementary stepwise biomarker selection analyses using 50% of the 

sample. 

 
 

6.3. Supplemental Text 3 
In these supplementary analyses, we compared stepwise regression performance 

of inflammation-related biomarkers from two ADNI Biomarker Consortium CSF 

Proteomics Project panels. We specifically examined if the selected LC/MRM-MS 

NPTX2 (TESTLNALLQR) and C3LP1 (ILGQQVPYATK) peptides performed better 

than or comparable to inflammation-associated proteins in CSF from a Rules Based 

Medicine (MyriadRBM) multiplex assay. The outcomes of interest were MTL atrophy 

and memory decline by month 24 relative to baseline. Covariates were put in using the 

‘enter’ method in the first model step and included age, sex, education, clinical diagnosis 
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at baseline, and APOE Status. Predictors were then put in using the ‘stepwise’ method in 

the second model step.  

Methods for the MyriadRBM panel are currently described in the Consortium’s 

white paper (See “2011Dec19 Biomarkers Consortium Data Primer PDF-2” under 

‘Biospecimen Results’ at http://ida.loni.usc.edu). Briefly, the Luminex xMAP 

immunoassay panel (“discovery MAP”) was run on 159 CSF analytes relevant to 

Alzheimer’s etiology or progression. Extensive quality control (QC) was performed 

including test/retest samples, assessing volumetric and mechanical functionality of the 

system, and confidence levels of analyte results in comparison to the MyriadRBM 

protocol. We obtained values from the ADNI CSF QC Multiplex data set. For exploration 

purposes, we examined all 27 inflammation-related analytes (see Table e-1) regardless of 

QC confidence intervals. Many QC analytes had no sample in the detectable range.  

 For MTL atrophy by 24 months, among 229 participants with longitudinal brain 

data, MyriadRBM biomarkers were first assessed. Interleukin-3 significantly loaded onto 

the model [F Change(1,222) = 9.179, p = .003]. Adjusted R-Squares indicated that 

interleukin-3 explained an additional 1.8% of the variance beyond the 48.5% attributed to 

covariates. In a subsequent stepwise model, among 227 participants with both 

MyriadRBM and MRM-MS data, interleukin-3 was added in the same step with NPTX2 

and C3LP1. Both NPTX2 [F Change(1,220) = 17.623, p < .001] and C3LP1 [F 

Change(1,220) = 16.786, p < .001] loaded significantly, whereas interleukin-3 was a 

marginal contributor and therefore excluded [t = 1.921, p = .056].  
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 For memory decline by 24 months, among 260 participants with longitudinal 

neuropsychological data, MyriadRBM biomarkers were first assessed. Angiopoietin-2 [F 

Change (1,253) = 7.873, p = .005] and RANTES [F Change (1,252) = 4.576, p = .033] 

both loaded as significant predictors. These analytes explained an additional 1.2% and 

1.1% of the variance in memory decline beyond 16.3% attributed to covariates. In a 

subsequent stepwise model, among 258 participants with both MyriadRBM and MRM-

MS data, Angiopoietin-2 and RANTES were added in the same step with NPTX2 and 

C3LP1. All of the predictors loaded significantly [NPTX2: F Change (1,251) = 12.918, p 

< .001; C3LP1: F Change (1,250) = 5.173, p = .024; Angiopoietin-2: F Change (1,249) = 

5.086, p = .025; RANTES: F Change (1, 248) = 4.357, p = .038], respectively explaining 

an additional 3.8%, 1.3%, 1.3%, and 1.0% of the variance beyond the 16.4% attributed to 

covariates.  

 These results suggest that C3LP1 and NPTX2 are consistently implicated in both 

MTL atrophy and memory decline in ADNI. Therefore, we continued to use these 

peptide biomarkers in subsequent analyses. By contrast, MyriadRBM biomarkers appear 

to be useful predictors only for memory decline. Several limitations should be 

acknowledged. The MyriadRBM panel surveyed many inflammatory cytokines, 

chemokines, tumor necrosis factors, and interferons. Unfortunately, detection limits 

precluded analysis of many potentially viable biomarkers in CSF. We also did not 

comparatively test panel differences for other brain regions that exhibit Alzheimer’s-

related atrophy over time, such as prefrontal cortex.  
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6.4. Supplemental Text 4 

Across time, NPTX2 x Time interactions for MMSE [F=6.787, P<.001], CDR-

sob [F=10.497, P<.001], and ADAScog-11 [F=9.019, P<.001] indicated that higher 

levels predicted less global decline. For example, by month 24, higher baseline NPTX2 

predicted higher MMSE [β±SE=1.49±0.33, F=6.79, P<.001], lower CDR-sob [β±SE=-

0.98±0.19, F=10.50, P<.001], and lower ADAScog-11 scores [β±SE=-2.65±0.54,	
  F=9.02, 

P<.001]. The converse pattern was seen with the C3LP1 x Time interactions for MMSE 

[F=3.911, P=.021], CDR-sob [F=6.439, P=.002], and ADAScog-11 [F=7.239, P=.001]. 

For example, by month 24, higher C3LP1 levels predicted lower MMSE [β±SE=-

1.85±0.53, F=3.91, P=.021], higher CDR-sob [β±SE=0.80±0.30, F=6.44, P=.002], and 

higher ADAScog-11 [β±SE=2.38±0.86, F=7.24, P<.001]. Exploratory interactions with 

covariates revealed no significant effects after Holm-Bonferroni correction. 

 

6.5. Supplemental Text 5 

Confirmatory tests of biomarkers using randomized 50% sub-samples (mixed 
models) 

 
These supplemental analyses were done to confirm models created from the 

biomarker selection step (see Supplemental Text 2). The repeated measures linear mixed 

models analyses for the table below were performed using a randomly selected 50% of 

subjects from the n=285 cohort per iteration. The term of interest was a Predictor x Time 

interaction, to determine to what degree a predictor explained variance in the outcome 

over time. The number of confirmation test iterations for NPTX2 and C3LP1 was directly 

proportional to the number of times NPTX2 and/or C3LP1 were selected in the model 

generation step using the other randomly selected 50% of subjects from the full cohort. 
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For example, as shown in Supplemental Text 2, NPTX2 and C3LP1 were chosen in the 

model generation phase 8 out of 10 and 7 out of 10 times respectively. Therefore, we 

conducted 8 randomized confirmation tests to regress NPTX2 against memory decline 

over time, and similarly conducted 7 randomized confirmation tests to regress C3LP1 

against memory decline over time.  

The table below shows the R-squared value and p-value per random iteration for 

NPTX2 and C3LP1. We also list the mean R-squared value and p-value. For simplicity, 

we only report the R-squared in predicting medial temporal atrophy and memory decline 

between months 12 to 24. P values for the Predictor by Time interaction are noted below 

each R-squared for a given random iteration.  

 

Supplemental Text 5 Embedded Table. R2 value and p-value per random iteration for 

NPTX2 and C3LP1. 

 

 
 

 

 

 

 

Memory'Decline
NPTX2 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8 Mean
M12 to M24 R-squared value 0.34 0.543 0.407 0.502 0.293 0.266 0.218 0.501 0.384
NPTX2 * Time: p value 0.003 < .001 < .001 < .001 0.003 0.007 0.003 < .001 < .001

C3LP1
M12 to M24 R-squared value 0.04 0.065 0.082 0.041 0.03 0.037 0.023 0.045
C3LP1 * Time: p value 0.312 0.136 0.034 0.267 0.424 0.232 0.608 0.288

Medial Temporal Atrophy
NPTX2 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8 Iteration 9 Mean
M12 to M24 R-squared value 0.125 0.251 0.434 0.214 0.243 0.123 0.28 0.317 0.248
NPTX2 * Time: p value 0.003 0.007 0 0 0 0 0.003 0.003 < .001

C3LP1
M12 to M24 R-squared value 0.159 0.123 0.122 0.054 0.049 0.157 0.132 0.034 0.058 0.099
C3LP1 * Time: p value < .001 0.015 < .001 0.002 < .001 < .001 < .001 0.001 0.024 0.005
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6.6. Supplemental Figure 1.  

 
 
Supplemental Figure 1. NPTX2 and Memory Performance across Time 
 
Associations between baseline NPTX2 and change over time for the memory factor score 
relative to baseline at months 6 (Time 1), 12 (Time 2), and 24 (Time 3). The solid and 
dotted blue lines indicate mean atrophy over time for subjects at 1-2SD above or below 
the mean for NPTX2 respectively. Please note that C3LP1 was not a significant predictor 
of change in the memory factor over time. NPTX2, neuronal pentraxin 2. 
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6.7. Supplementary Figure 2. 

 
 
Supplemental Figure 2. Mass Spectrometry Biomarkers and Medial Temporal Atrophy 
across Time 
 
Associations between baseline NPTX2 (left graph) or C3LP1 (right graph) and change in 
medial temporal lobe (MTL) gray matter volume, expressed as a percentage relative to 
baseline and months 6 (Time 1), 12 (Time 2), and 24 (Time 3). The solid and dotted blue 
lines indicate mean atrophy over time for subjects at 1-2SD above or below the mean for 
NPTX2 respectively. The solid and dotted red lines indicate mean atrophy over time for 
subjects at 1-2SD above or below the mean for C3LP1 respectively. C3LP1, chitinase-3-
like-protein 1; NPTX2, neuronal pentraxin 2. 
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6.8. Supplemental Figure 3 

 
 
Supplemental Figure 3. Modulation of NPTX2 and CSF Amyloid Associations 
by APOE Genotype  
 
The association between baseline CSF Aβ 1-42 and NPTX2t among non-APOE4 
or APOE4 carriers. The star and triangle shapes indicate values for non-APOE4 
and APOE4 carriers respectively. The R

2 reflects the proportion of variance in 
amyloid burden as explained by the associations of NPTX2 for APOE4 and non-
APOE4 carriers. Covariates included age at baseline, sex, education, APOE ε4 
genotype, and baseline clinical diagnosis. NPTX2, neuronal pentraxin 2. 
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6.9. Supplemental Table 1 

Supplemental Table 1. Inflammation-Related Biomarkers 
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